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Abstract
We derive a formula describing the evolution of tip splittings of Saffman–Taylor
fingers in a Hele–Shaw cell, at zero surface tension.

PACS numbers: 02.30.Ik, 05.45.Df, 05.45.Yv

Fingered patterns characterize the non-equilibrium growth processes of many systems, for
example, the dendritic shape of snowflakes, the outline of bacteria colonies growing in
stressed environments, electro-deposition, dielectric breakdown, and viscous fingering formed
by forcing a non-viscous fluid into the centre of a Hele–Shaw cell filled with a viscous fluid
(Saffman–Taylor flow) [1]. Repeated events of tip splittings and side branching during the
growing process manifest themselves in complicated fractal patterns. Understanding the
structure of such patterns is a challenge for theorists.

When the growing patterns are self-similar, one expects that their global structure can
be deduced from the basic elements of the growing process, such as tip splitting and side
branching. Indeed, studies of theoretical models of diffusion limited aggregation [2], and their
generalizations (e.g. the dielectric breakdown model) demonstrate that the fractal dimension
of the corresponding patterns is related to characteristics of the tip-splitting events [3] (side
branching in these models is negligible).

In this work we focus our attention on the fingered patterns generated by Saffman–Taylor
(ST) flows in a Hele–Shaw cell, in the radial geometry. In particular, we shall be interested in
the evolution of tip splitting in the singular limit where the surface tension associated with the
interface between the viscous and the non-viscous fluids approaches zero (or alternatively high
pumping rate of the non-viscous fluid). The ST dynamics in this limit, which we shall refer to
as the idealized ST problem, has been shown to be integrable [4]. Therefore, it constitutes an
important paradigm in the field of non-equilibrium growth processes.

The idealized ST problem admits a large class of exact solutions [5–7]. Among these
one may find solutions which resemble various forms of tips split at large surface tension
[8]. These solutions are characterized by a smooth evolution of the bubble counter for any
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(A) (B)

Figure 1. The evolution of tip splittings in the Saffman–Taylor problem at zero surface tension.
The contours represent snapshots of the evolution as function of the time. The evolution given in
(1) is characterized by one parameter, φ, which controls the asymmetry between the two generated
fingers. Panel A shows the symmetric evolution, while panel B represents a typical asymmetric
behaviour.

time. Yet, these solutions lack universality since they depend on precise details of the initial
conditions.

Nevertheless, there is another class of solutions of the idealized ST problem: solution
which exhibit a cusp-like singularity after finite time. A generic ST bubble always develops a
cusp. The cusp singularity dominates the evolution in its vicinity, and therefore it is expected
to be universal. Thus, our aim is to describe the local dynamics near cusps of tip splitting.

Our central result is, thus, a formula which describes the evolution of tip splitting in time.
It has the form

z(s, t) = s2 + uφ(t) +
vφ(t)

wφ(t) + is
, (1)

where z = x + iy is a complex coordinate on the bubble contour, −∞ < s < ∞ parametrize
the curve, and uφ(t), vφ(t) and wφ(t) are functions of the time, t. These functions which will
be calculated in what follows, depend on a single parameter, φ, governing the asymmetric
shape of the evolution. In figure 1 we depict contours obtained from (1) which represent
snapshots of the tip-splitting evolution as function of the time.

A problem one encounters when trying to describe the tip-splitting evolution is that a naive
extension of the idealized ST dynamics beyond the cusp singularity is impossible. One may
try to compute the ST dynamics, in the vicinity of a cusp, by introducing some infinitesimal
surface tension. This approach indeed regularizes the problem but the resulting equations are
nonintegrable, and the analytical treatment becomes very complicated [9]. There are some
exact steady-state solutions, with surface tension, but these do not exhibit tip splitting [10].

Alternatively, the cusp singularity may be resolved by a method known as ‘dispersive
regularization’ [11, 12], which preserves the integrable structure of the problem. This approach
is similar, in spirit, to the construction of Gurevitch–Pitaevskii solutions for the KdV equation
[13]. Its application to the ST problem is discussed extensively in3. Here we shall focus on
time intervals where these aspects of the regularization are irrelevant.

We begin by recalling the ST problem. The local velocity of a viscous fluid in a thin cell
is proportional to the gradient of the pressure �v ∝ �∇p, where p(z) is a harmonic function due
to incompressibility. In the zero surface tension limit, the pressure may be taken to be equal to
zero on the perimeter of the bubble, while at infinity it diverges logarithmically. At constant
flow rate, the area of the bubble grows linearly with time, t. We set the flow rate such that
the area is πt . The other parameters, viscosity and width of the cell, are chosen such that the
pressure is equal to the velocity potential.

3 E. Bettelheim et al, in preparation.
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An important feature of the ST dynamics, at zero surface tension, is the conservation of
the harmonic moments: dtk

dt
= 0, where

tk = − 1

πk

∫
visc.fluid

d2zz−k, k = 1, 2, . . . . (2)

and the integration is over the domain occupied by the viscous fluid. This property implies
that the idealized ST dynamics is integrable, i.e. the bubble’s contour can be determined from
the set of harmonic moments, tk’s, and the area πt . Our goal is to describe the evolution of
this contour in the vicinity of the tip splitting.

In order to do so, it is instructive to introduce a potential defined as V (z) = t log(z) +∑
k tkz

k . In particular, it will be convenient to work with sets of harmonic moments for which
the potential can be resummed as

V (z) = t log(z) + t1z +
N∑

i=1

µi log(z − qi). (3)

Thus, the set {tk}∞k=1 is replaced by a new set of parameters {µi}Ni=1 and {qi}Ni=1 known as Miwa
variables in the soliton literature [14]. In particular qi and µi are, respectively, the location
and the weight (assumed to be real) of the ith Miwa variable.

The potential defined above encodes the shape of the bubble in a rather complicated way.
A function from which it is easier to extract this information is the Schwarz function. This
function has proved to be a useful tool for the analysis of the ST problem (see e.g. [10, 15,
16]). A Schwarz function, S(z), of a given contour C satisfies the relation S(z) = z̄ (where z̄

is the complex conjugate of z) for points z which lie on the contour C. Away from the contour
it is defined via analytic continuation. The simplest example is a circular contour of area πt ,
whose Schwarz function can be easily deduced to be S(z) = t

z
.

The Schwarz function is related to the set of harmonic moment by the contour integral
tk = 1

2π i

∮
C S(z)zk dz. It implies that, on the exterior of the bubble, S(z) has the same singular

structure as ∂V (z)

∂z
(as can be seen by deforming the contour integral such that it envelopes the

singularities of S(z) on the exterior of the bubble). Thus the analytic structure of S(z) in the
exterior domain, can be extracted from the potential, V (z).

To reveal the analytic behaviour of S(z) in the interior of the bubble one may employ an
important property of the Schwarz function known as the unitarity condition,

S̄(S(z)) = z, (4)

where the complex conjugation of a function, f̄ (z), is defined as f (z) ≡ f (z). The equation
above trivially holds for z ∈ C and by analytic continuation all over the complex plane. S(z)

maps points from the exterior of the bubble (where the analytic structure is known) to points
on the interior domain. Thus all singularities of S(z) can be identified, and hence its precise
analytic form, as a function of the Miwa variables and the time.

We proceed by assuming that the Schwarz function is an algebraic function, i.e. a function
defined on some algebraic Riemann surface. Let us explain what is an algebraic Riemann
surface, and then describe how to define a Schwarz function on this surface. Consider a
polynomial equation of the form P(z, f (z)) = 0, where P is a polynomial in two variables.
Solving this equation we obtain for each z a set of solutions f (z). In general f (z) will have
branch cuts. A simple example of such a polynomial is P(z, f ) = f 2 − �4

i=1(z − λi), where

we obtain f (z) =
√

�4
i=1(z − λi). In general there will be n solutions of f for each z.

Thus one may introduce n copies of the complex plane, where each copy is associated with a
well-defined value of f (z). Clearly, on each copy of the complex plane f (z) is discontinuous
along the branch cuts. To define it as a continuous function we may paste together the various
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sheets of the complex plane along the branch cuts. Then, together with a choice of local
coordinate systems around each point one obtains a Riemann surface composed of n sheets.

Since we assume that the Schwarz function may be defined on such a Riemann surface,
one should assign for each point on the Riemann surface, a value of Schwarz function, S. In
order to specify such a point we must indicate the sheet-index i (where 1 � i � n), and a
complex number z. The index, i, will specify on which copy of the complex plane the point
lies, and a complex number, z, will specify the coordinate on that copy. There will be one
copy of the complex plane, which will be termed as ‘the physical sheet’, on which the bubble
lies. On this Riemann sheet S(z) will be equal to z̄ on the perimeter of the bubble. All other
‘unphysical’ Riemann sheets will be considered as parts of the ‘interior domain’ since there
are no branch cuts on the exterior domain (where the pressure is harmonic).

Let us now consider a situation where the potential has the form (3), and show that the
number of unphysical sheets is the number of Miwa variables. On the exterior of the bubble
S(z) has the following singular structure determined by ∂V

∂z
:

S(z) ∼ t

z
+ t1 −

N∑
i=1

µi

z − qi

.

For the point qi , unitarity (4) implies that S̄(S(qi)) = S̄(∞) = qi. Thus a point at infinity
should be mapped to the point q̄i . This point should be located on one of the unphysical
sheets since on the physical sheet S(∞) = t1. Conversely, the value of the Schwarz function
at infinity on an unphysical sheet correspond to a particular Miwa variable. From here on we
consider the case of two Miwa variables, which is the minimal model exhibiting a tip-splitting
scenario. The corresponding Riemann surface is thus composed of three sheets.

For actual calculation of the contour’s evolution it will be convenient to use a conformal
mapping which maps the exterior of some ‘source domain’ (in ζ -plane) to the exterior of the
physical bubble, the ‘target domain’ (in z-space). The source domain is usually taken to be the
unit circle; however, we found it more convenient to use a bubble with a cusp. The advantage
in using this source domain is that we can choose the mapping to be non-trivial only around
the tip, while everywhere else it would be approximately proportional to the identity map.

We will study the evolution near the tip in the case where the weight of one of the Miwa
variables is small compared to the other. This suggests choosing the source domain to be
the one Miwa-variable bubble at the point where a cusp is formed. The Riemann surface
in this case is composed of two sheets as described above. If we assume this surface to be
of genus zero, then by the Riemann–Hurwitz theorem, the number of branch points is two.
Thus the Riemann surface is given by the polynomial equation R2 = (ζ − λ1)(ζ − λ2). A
function defined on this surface (the Schwarz function in particular) contains a branch cut
which extends from point λ1 to point λ2. An example of such a function is R(ζ ).

The 1-Miwa bubble is characterized by four parameters t1, t, q and µ, since the location
of the branch points depends on these parameters, one can calculate the area of the bubble
and its first harmonic moment, t1, from the location of the branch points λ1 and λ2. We will
fix µ = −q = 1 and treat λ1 and λ2 as the parameters which describe the bubble. If we
also demand that the bubble is at the moment where the cusp forms, we can characterize the
bubble by a single parameter, say λ1. We assume that λ1 < λ2 and that λ1 is of order δ, where
δ 	 1. This assumption implies that the global bubble shape is dominated by the cusp. Then
the bubble area is of order δ3 while the first harmonic moment, t1, is 1 + O(δ2). The Schwarz
function, σ(ζ ), of such a bubble is

2σ(ζ ) = (t1 − 1) +
t − 1

ζ − t̄1
− 1

ζ + 1
+

(t1 + 1)(ζ − λ1)R(ζ )

(ζ − t1)(ζ + 1)
,
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as can be ascertained by examining this function’s singular structure and that it satisfies the
unitarity condition (4). The fact that this function describes a bubble with a cusp can be
checked by considering the behaviour of the solution of σ(ζ ) = ζ̄ near λ1 (where the cusp is
located).

Up till now we have characterized the ‘source domain’. We would like, now, to specify the
physical bubble, or the ‘target domain’ associated with two Miwa variables. For this purpose
we must give the mapping between the source and target domains. This mapping is taken to
be

z(ζ ) = c1

(
ζ +

α

2

R(θ) − R(ζ )

ζ − θ
+ βR(ζ )

)
+ c2, (5)

where c1, c2, α, β and θ are parameters of the mapping and R(ζ ) ≡ √
ζ − λ1

√
ζ − λ2. This

mapping can be considered as a mapping from the 1-Miwa Riemann surface to the 2-Miwa
Riemann surface. The mapping has singularities at the infinities on each of the sheets of the
Riemann surface associated with the source domain, which are mapped to infinites on different
sheets on the target domain, as well as at the point θ on the unphysical sheet. This point, θ,

is mapped to an infinity on a third sheet of the target Riemann surface. Thus (5) indeed maps
a two-sheeted Riemann surface, which is associated with a 1-Miwa bubble, to a three-sheeted
Riemann surface.

That, indeed, the target Riemann surface is associated with a 2-Miwa variable bubble,
can be deduced from the singular structure of the Schwarz function of the target domain. The
latter is given by S(z) = z̄ (σ (ζ (z))), where ζ(z) is the inverse map of z(ζ ), and σ(ζ ) is the
Schwarz function of the source domain.

Having S(z) one may extract all constants of motion (Miwa variables, q1, and q2; Miwa
weights, µ1 and µ2; and t1), and the area t, from its singular structure. These will be expressed
as functions of the parameters of the mapping (5) and λ1. Solving these relations one may
express the parameters of the mapping as functions of the time and thus obtain the evolution
of the contour. We take µ1 = −q1 = 1 by fixing c1 and c2. Thus the parameters whose time
evolution is to be determined are α, β, θ and λ1.

To obtain reasonably simple equations, we expand all quantities in orders of δ and take
the leading order. Let us assume that for some initial moment, t (0), around the formation of
the tip, λ1 assumes the value λ, to leading order in δ. We now make the following scaling
ansatz: α ∼ δ4, β ∼ δ3, ν ≡ λ1 − θ ∼ δ3 and δλ ≡ λ1 − λ ∼ δ3. Then the equations we
obtain, to leading order in δ, for the constants of motion q2 − λ and µ2 are

q2 − λ = β + δλ − ν̄ − α
√−λ√
ν +

√
ν̄

(6)

µ2 = −2ᾱ
√−λ

√
ν

(
1 − α

√−λ

2
√

ν̄
(√

ν +
√

ν̄
)
)

. (7)

Let us now define T1 = t1 − (
1 + 3λ2 − 7λ3 + 33

2 λ4
)

(the difference between the first
harmonic moment of the target bubble and a source bubble with λ1 = λ to order O(δ5)), and
similarly T = t − (−4λ3 + 18λ4 − 63λ5). With these definitions, analysis of the singularities
of S(z) yields

T = 2
(α)λ + 4βλ2 − 12λ2δλ, (8)

T1 = 
(α) − 2βλ + 6λδλ. (9)
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The solution of equations (6)–(9) give the parameters α, β, ν and δλ in terms of q2, µ2, T

and T1, which define, in turn, the conformal mapping of the contour on the target space as
function of the time. To write down the solution of these equations it will be convenient to
define a shifted rescaled time δt ≡ − T + 2T1λ

4µ
3/4
2

√−λ
and introduce two functions ξ and η which

satisfy the nonlinear equations:(√
2δt√
ξ

+
δt2

2ξ 2

)
(η + ξ) = 1, η =

(
φ√

ξ − δt√
2ξ

)2

,

where φ = �(
q2√
µ2

)) is the asymmetry parameter. The solution of these equations gives η and
ξ as functions of the rescaled time, δt , and φ. With the help of these functions we may write
the solution of equations (6-9) as

α = µ
3/4
2 δt√−λ

(
−1 + i

√
η

ξ

)
,

4β = 3
(q2) − 3λ − 3

2
(η − ξ) − 3δt√

2ξ
− T1

4λ
+

T

8λ2
,

ν = ξ − η

2
+ i

√
ξη,

4δλ = 3
(q2) − 3λ − 3

2
(η − ξ) − 3δt√

2ξ
+

T1

4λ
− T

8λ2
.

Given this time dependence of the parameters of the conformal mapping we are in a
position to describe the contour dynamics in the vicinity of the tip splitting. For this purpose
it is sufficient to focus on the image of the source domain around the cusp. The shape of the
source domain near the cusp is given by the universal form y = Aδx3/2, were δx ≡ x − λ1,
and A is some constant. Close enough to the cusp y 	 δx, and therefore we may assume that
y � 0 (this assumption can be proved to be consistent with the expansion in the parameter δ

performed above). Thus one has to find the image of the ray x > λ1 under the mapping z(ζ )

to leading order in δ. The result is given by equation (1), where the functions uφ(t), vφ(t) and
wφ(t) are

uφ(t) = ξ − η

2
− δt√

2ξ
,

vφ(t) = δt

(
1 − i

√
η

ξ

)
,

wφ(t) = ξ − η

2
+ i

√
ηξ.

The above equations together with (1) describe the evolution of a tip splitting of the ST problem
at zero surface tension (figure 1). The form of the tip splitting depends on a single parameter, φ,
which controls the asymmetric shape of the evolution. Since our derivation of the tip-splitting
formula makes use only of local properties near the tip, it is suggestive that this evolution, for
short times, is universal. Namely, the tip-splitting evolution is characterized by one parameter,
φ, independent of the shape of the bubble on large scales. The shortcomings of our analysis
is that it does not include the influence of surface tension. Therefore it breaks down after
a short time due to the formation of cusps. The method of dispersive regularization can be
employed again to continue the evolution. Thus, in comparing our theoretical prediction with
experiment, one can hope for agreement only within a limited time interval near the initial
stage of the tip splitting.

We thank Paul Wiegmann and Anton Zabrodin for useful discussions. This research
has been supported in part by the Israel Science Foundation (ISF), and by the German-Israel
Foundation (GIF).
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